6 resultados para Evolutionary Biology

em Plymouth Marine Science Electronic Archive (PlyMSEA)


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperate reefs are superb tractable systems for testing hypotheses in ecology and evolutionary biology. Accordingly there is a rich history of research stretching back over 100 years, which has made major contributions to general ecological and evolutionary theory as well as providing better understanding of how littoral systems work by linking pattern with process. A brief resumé of the history of temperate reef ecology is provided to celebrate this rich heritage. As a community, temperate reef ecologists generally do well designed experiments and test well formulated hypotheses. Increasingly large datasets are being collected, collated and subjected to complex meta-analyses and used for modelling. These datasets do not happen spontaneously – the burgeoning subject of macroecology is possible only because of the efforts of dedicated natural historians whether it be observing birds, butterflies, or barnacles. High-quality natural history and old-fashioned field craft enable surveys or experiments to be stratified (i.e. replicates are replicates and not a random bit of rock) and lead to the generation of more insightful hypotheses. Modern molecular approaches have led to the discovery of cryptic species and provided phylogeographical insights, but natural history is still required to identify species in the field. We advocate a blend of modern approaches with old school skills and a fondness for temperate reefs in all their splendour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Choanoflagellates are the closest single-celled relatives of animals and provide fascinating insights into developmental processes in animals. Two species, the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta are emerging as promising model organisms to reveal the evolutionary origin of key animal innovations. In this review, we highlight how choanoflagellates are used to study the origin of multicellularity in animals. The newly available genomic resources and functional techniques provide important insights into the function of choanoflagellate pre- and postsynaptic proteins, cell-cell adhesion and signaling molecules and the evolution of animal filopodia and thus underscore the relevance of choanoflagellate models for evolutionary biology, neurobiology and cell biology research.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Choanoflagellates are the closest single-celled relatives of animals and provide fascinating insights into developmental processes in animals. Two species, the choanoflagellates Monosiga brevicollis and Salpingoeca rosetta are emerging as promising model organisms to reveal the evolutionary origin of key animal innovations. In this review, we highlight how choanoflagellates are used to study the origin of multicellularity in animals. The newly available genomic resources and functional techniques provide important insights into the function of choanoflagellate pre- and postsynaptic proteins, cell-cell adhesion and signaling molecules and the evolution of animal filopodia and thus underscore the relevance of choanoflagellate models for evolutionary biology, neurobiology and cell biology research.